skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cameron, A D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The HTRU-S Low Latitude survey data within 1° of the Galactic Centre (GC) were searched for pulsars using the Fast Folding Algorithm (FFA). Unlike traditional Fast Fourier Transform (FFT) pipelines, the FFA optimally folds the data for all possible periods over a given range, which is particularly advantageous for pulsars with low-duty cycles. For the first time, a search over acceleration was included in the FFA to improve its sensitivity to binary pulsars. The steps in dispersion measure (DM) and acceleration were optimized, resulting in a reduction of the number of trials by 86 per cent. This was achieved over a search period range from 0.6 to 432-s, i.e. 10 per cent of the observation time (4320s), with a maximum DM of 4000 pc cm−3 and an acceleration range of ±128 m s−2. The search resulted in the re-detections of four known pulsars, including a pulsar that was missed in the previous FFT processing of this survey. This result indicates that the FFA pipeline is more sensitive than the FFT pipeline used in the previous processing of the survey within our parameter range. Additionally, we discovered a 1.89-s pulsar, PSR J1746-2829, with a large DM, located 0.5 from the GC. Follow-up observations revealed that this pulsar has a relatively flat spectrum (α = −0.9 ± 0.1) and has a period derivative of ∼1.3 × 10−12 s s−1, implying a surface magnetic field of ∼5.2 × 1013 G and a characteristic age of ∼23 000 yr. While the period, spectral index, and surface magnetic field strength are similar to many radio magnetars, other characteristics such as high linear polarization are absent. 
    more » « less
  2. ABSTRACT We report observed and derived timing parameters for three millisecond pulsars (MSPs) from observations collected with the Parkes 64-m telescope, Murriyang. The pulsars were found during reprocessing of archival survey data by Mickaliger et al. One of the new pulsars (PSR J1546–5925) has a spin period P = 7.8 ms and is isolated. The other two (PSR J0921–5202 with P = 9.7 ms and PSR J1146–6610 with P = 3.7 ms) are in binary systems around low-mass ($${\gt}0.2\, {\rm M}_{\odot }$$) companions. Their respective orbital periods are 38.2 and 62.8 d. While PSR J0921–5202 has a low orbital eccentricity e = 1.3 × 10−5, in keeping with many other Galactic MSPs, PSR J1146–6610 has a significantly larger eccentricity, e = 7.4 × 10−3. This makes it a likely member of a group of eccentric MSP–helium white dwarf binary systems in the Galactic disc whose formation is poorly understood. Two of the pulsars are co-located with previously unidentified point sources discovered with the Fermi satellite’s Large Area Telescope, but no γ-ray pulsations have been detected, likely due to their low spin-down powers. We also show that, particularly in terms of orbital diversity, the current sample of MSPs is far from complete and is subject to a number of selection biases. 
    more » « less
  3. ABSTRACT The International Pulsar Timing Array 2nd data release is the combination of data sets from worldwide collaborations. In this study, we search for continuous waves: gravitational wave signals produced by individual supermassive black hole binaries in the local universe. We consider binaries on circular orbits and neglect the evolution of orbital frequency over the observational span. We find no evidence for such signals and set sky averaged 95 per cent upper limits on their amplitude h95. The most sensitive frequency is 10 nHz with h95 = 9.1 × 10−15. We achieved the best upper limit to date at low and high frequencies of the PTA band thanks to improved effective cadence of observations. In our analysis, we have taken into account the recently discovered common red noise process, which has an impact at low frequencies. We also find that the peculiar noise features present in some pulsars data must be taken into account to reduce the false alarm. We show that using custom noise models is essential in searching for continuous gravitational wave signals and setting the upper limit. 
    more » « less